

ZW3D API INTRODUCTION 1

ZW3D API Introduction

This document only gives basic introduction to ZW3D API. We recommend C/C++ for developing

add-ons based on ZW3D. We will keep improving the API to make it more supportive to help our

partners develop powerful applications based on ZW3D.

Should you have any suggestions or requirements, please feel free to contact us.

You could email zdn@zwsoft.com for help.

Thanks.

ZW3D™ is a registering trademark of ZWSOFT CO., LTD.(GUANGZHOU)

The ZW3D™ logo is a registering trademark of ZWSOFT CO., LTD.(GUANGZHOU)

ZWCAD™, ZWSOFT™, the ZWCAD™ logo, and the ZWSOFT™ logo are all trademarks of ZWSOFT

CO., LTD.(GUANGZHOU)

Printed in the P. R. China.

mailto:zdn@zwsoft.com

ZW3D API INTRODUCTION 2

Contents

ZW3D API Introduction ... 3

Chapter 1: Start with ZW3D API .. 3

Chapter 2: Customized Menu / Ribbon / Toolbar ... 13

Chapter 3: ZW3D UI Designer introduction .. 18

Chapter 4: Use ZW3D Command Dialog ... 24

Chapter 5: How to call ZW3D functions? .. 29

Chapter 6: ZW3D Register information ... 42

ZW3D API INTRODUCTION 3

ZW3D API Introduction

Chapter 1: Start with ZW3D API

1. System requirement

a) Windows 7 or above

b) Visual studio 2019 (or any another IDE for C/C++)

c) ZW3D 2012 or above

d) Qt5.9.7(for Windows)

Note: After installing Qt, you can double-click the script of “CopyQtDll.bat” in api folder of

ZW3D installation directory to complete installing ZW3D custom control. Once the installation

is complete, you can open Qt Designer plug-in and use custom control provided by ZW3D.

2. Create a project

a) Open Visual Studio 2019 and choose Create a new project.

b) Choose Dynamic Link Library (DLL) and click Next.

ZW3D API INTRODUCTION 4

c) Input name as HelloZW3DAPI, and then click Create.

3. Add HelloZW3DAPI.h, HelloZW3DAPI.cpp HelloZW3DAPI.def to this project.

ZW3D API INTRODUCTION 5

4. Set the project.

Right click on the project and choose Properties. Then, add the directory of ZW3D API head file to

C/C++ → General → Additional Include Directories.

a) Add the directory of ZW3D API library file to Linker→ General → Additional Library

Directories.

ZW3D API INTRODUCTION 6

b) Add ZW3D API library to Linker→ Input → Additional Dependencies.

ZW3D API INTRODUCTION 7

c) To compile resource, add command line to Build Events→Post-Build Event→Command

Line.

(Note: If there is no resource file in your project. Such as image/UI. This step is optional)

The contents as shown below:

IF EXIST "$(ZW3D_DIR)zrc.exe" "$(ZW3D_DIR)zrc.exe" "$(SolutionDir)\." -o "$(TargetDir)$(ProjectName).zrc"

(Note: ZW3D_DIR is an environment variable whose value is ZW3D installation path)

5. Define the functions in HelloZW3DAPI.h. You can copy the following code directly.

#ifndefHELLOZW3DAPI_H

#defineHELLOZW3DAPI_H

#include"VXApi.h"

IntHelloZW3DAPIInit(int format, void *data);

IntHelloZW3DAPIExit(void);

IntHelloZW3DAPI(void);

#endif

ZW3D API INTRODUCTION 8

Note: The prefix of the functions must be the same as the project, which means

@customizedApp@Init() and @customizedApp@Exit() are the entrance functions of the

application. When @customizedApp@.dll is loaded by ZW3D, @customizedApp@Init() and

@customizedApp@Exit() will be checked to know the customized functions.

(@customizedApp@ means the name of any project you have created.)

6. Implement the functions in HelloZW3DAPI.cpp. You can copy the following code directly.

#include"HelloZW3DAPI.h"

IntHelloZW3DAPIInit(int format, void *data)

{

cvxCmdFunc("HelloZW3DAPI", (void*)HelloZW3DAPI, VX_CODE_GENERAL);

 return0;

}

IntHelloZW3DAPIExit(void)

{

 cvxCmdFuncUnload("HelloZW3DAPI");

 return0;

}

IntHelloZW3DAPI(void)

{

 cvxMsgDisp("Hello ZW3D API!");

 return0;

}

ZW3D API INTRODUCTION 9

7. Define the Module Definition file, HelloZW3DAPI.def.

You can copy the following code directly.

LIBRARY HelloZW3DAPI.dll

EXPORTS

 HelloZW3DAPIInit

 HelloZW3DAPIExit

HelloZW3DAPI

8. Build the project.

Right click on this project to build the project. Then, you can find HellowZW3DAPI.dll in the

directory “.\HelloZW3DAPI\Debug\HelloZW3DAPI.dll”.

9. Load HelloZW3DAPI.dll.

a) Use ZW3D Applications Manager to load the DLL and a message in the Output dialog

will show whether the command fails or succeeds.

Note: This path will be remembered in registration when ZW3D is closed, and next time

it will automatically follow the path to load the file.

ZW3D API INTRODUCTION 10

b) Copy HelloZW3DAPI.dll to the installation folder. “C:\Program Files\ZWSOFT\ZW3D

2015 Eng\apilibs”, then start ZW3D.

Note: ZW3D will search for applications in “.\apilibs”. If any, they will be loaded.

10. Run this application.

Input “~HelloZW3DAPI” in the command line, then press Enter. You can find “Hello ZW3D

API!” was shown in the Output dialog.

Note: Function name can be defined to any name, and it is not necessary to be the same as

the project. But it is a good habit to define it the same as the name of project.

11. Debug the application.

a) Right click on the project and set the Debugging Command as below. Then run “Local

Windows Debugger” or press F5 to start the debugger.

ZW3D API INTRODUCTION 11

b) Set the break point for each function.

c) Reference step 9 → a) to Load the DLL, you will find the following situations.

i. The debugger will get into HelloZW3DAPIInit() when the DLL is loaded.

ZW3D API INTRODUCTION 12

ii. The debugger will get into HelloZW3DAPI() when “~HelloZW3DAPI” (step 10) is

run.

iii. The debugger will get into HelloZW3DAPIExit() when the application is unloaded.

ZW3D API INTRODUCTION 13

Chapter2: Customized Menu / Ribbon / Toolbar

We create the first customized command in ZW3D. But input the command is complex. I will

introduce how to put this command in the Menu / Ribbon / Toolbar.

1. Open the ZW3D and right click on the space of the ribbon. Then, click Customize…

2. Define your command.

a) Change the type to All.

b) Add a new command.

c) Change the Property of the new command.

ZW3D API INTRODUCTION 14

3. Change the tap to Transfer to create your Own Menu / Ribbon / Toolbar.

a) Change the Type to All.

b) Change the Environment to Part/Assembly.

c) Add a new xml file.

d) Give the name to HelloZW3DAPI.

e) Customize the new xml file.

i. Right click on the Menus / Ribbon / ToolBars to create new items.

ii. Drag the “Hello ZW3D API” command from left to the new items you just have

created.

iii. Please refer to the following picture to create the same Menu / Ribbon / Toobar.

ZW3D API INTRODUCTION 15

f) Click OK to finish the customization.

g) Then, create a new part, and you can find the Menu / Ribbon / Toolbar there. You can

press the button to run the command.

ZW3D API INTRODUCTION 16

Note: if you get this warning: “ALERT: Unable to find HelloZW3DAPI: No such symbol.” It

means ZW3D cannot find your command. You need to load the DLL first. Please refer to

Chapter 1, point 9 to load the DLL.

4. Share the customization to other people.

a) Get the customized UI XML file (HelloZW3DAPI.zcui) from the user’s folder:

If your ZW3D version is prior to 2020, get from:

%appdata%\ZW3D 2015Eng\profiles\Default\Environment-2\Controls

If your ZW3D version after 2020(included), get from:

%appdata%\ZWSOFT\ZW3D\ZW3D 2022Eng\custom\profiles\Default\Environment-2\Controls

b) Get the customized Command XML file (User.zcui) from the user’s folder:

If your ZW3D version is prior to 2020, get from:

%appdata%\ZW3D 2015Eng\profiles\Default\Action

If your ZW3D version is after 2020, get from:

%appdata% \ZWSOFT\ZW3D \ZW3D 2022Eng\custom\profiles\Default\Action

c) Copy the files to the same directory in another PC.

d) Copy the DLL and the image to the installation directory, and the image must be put in

the folder which named as icons.

C:\Program Files\ZWSOFT\ZW3D 2015 Eng\apilibs

ZW3D API INTRODUCTION 17

Note: you can rename the XML to any other name. But you must put them in the right

directory. ZW3D will load them automatically.

ZW3D API INTRODUCTION 18

Chapter 3: ZW3D UI Designer introduction

1. What is ZW3D UI Designer?

ZW3D UI Designer is a UI designer based on QT 5.9.7 ZWSOFT bought the QT license from

Digia. We developed our own UI controls based on QT technology. ZW3D UI Designer is a

plugin based on QT Designer. Users need to download and install QT by themselves, and copy

the plugin provided by ZW3D to the QT Designer directory, start QT Designer where you can

see the UI control defined by ZW3D.

Note: You only can use ZW3D UI Designer for UI designer. All the coding logic, you cannot use

QT technology. ZW3D UI Designer does not include the QT libraries. So, you need to buy the

commercial version if you need to use the QT functions.

(1) The specific operations as follow:

a. Find dll in plugins\\designer in the installation package, copy to QT installation

directory of designer

CommonControlsPlugin.dll

QtnRibbonDsgn.dll

b. Find the following dll in the installation package, copy to QT bin directory

CommonControls.dll

ResourceSystem.dll

logging.dll

QtnRibbon.dll

(2) This can be done by adding script:

Create a CopyQTDll.bat file in the “api” directory in the installation path, copy the

following contents. Note: Modify QTPath

%@echo off%

set CurrentPath=%~dp0

cd /d %CurrentPath%

cd ..

set ZW3DPath=%cd%

if "%QTDIR%"=="" (

 set QTPath=D:\Qt\Qt5.9.7\5.9.7\msvc2017_64

) else (

 set QTPath=%QTDIR%

)

COPY "%ZW3DPath%\plugins\designer\CommonControlsPlugin.dll"

"%QTPath%\plugins\designer"

COPY "%ZW3DPath%\plugins\designer\QtnRibbonDsgn.dll"

"%QTPath%\plugins\designer"

COPY "%ZW3DPath%\logging.dll" "%QTPath%\bin"

COPY "%ZW3DPath%\CommonControls.dll" "%QTPath%\bin"

COPY "%ZW3DPath%\QtnRibbon.dll" "%QTPath%\bin"

ZW3D API INTRODUCTION 19

COPY "%ZW3DPath%\ResourceSystem.dll" "%QTPath%\bin"

Pause

2. What is ZW3D Command Dialog?

ZW3D Command Dialog is the special dialog for interaction when the user runs a command

in ZW3D. ZW3D UI Designer support the special controls to get the necessary values from

ZW3D modeling space or get/set some special values which only can be used in ZW3D.

3. ZW3D UI Designer introduction.

Form the following picture, you can find there are two extension groups on the left side. The

group marked in red is the controls for ZW3D Command Controls. The controls are used for

ZW3D Command Dialog design.

The group marked in purple is the extension of Qt controls. They are used for Qt dialog

design. We don’t suggest using them if you don’t have some special requirement.

ZW3D API INTRODUCTION 20

4. How to create ZW3D Command dialog?

a) Open ZW3D UI Designer. And create a new Form based on ZsCc::Form. You can get the

basic form as the picture below. Then, set the objectName and functionName to

SetColor.

ZW3D API INTRODUCTION 21

b) Drag the Label to the Required area, change the text to “Select an Entity:”. Set the

object Name to id1label.

c) Drag the Entity control to the Required area. Set the ID to 1. The number of the ID can

be any number, but it must be the same as the number in the Label’s object Name

ZW3D API INTRODUCTION 22

which means these two controls are a group.

d) Use Qt function to layout these two controls. Choose both controls and right click to

choose Lay Out Horizontally.

e) Right click on drawbackBoxGroup and choose Lay Out Vertically.

ZW3D API INTRODUCTION 23

f) You will get the command dialog as follows:

g) Save the dialog to SetColor folder, named as SetColor.ui. You need to edit

SetColor.tcmd by manual and refer to the platform template files provided by ZW3D.

Please see details about key properties of tcmd in Chapter 5.

h) Put SetColor.ui in forms folder and put SetColor.tcmd in commands folder. You can

ZW3D API INTRODUCTION 24

refer to the following figure:

i) To compile resource, your project need add command line to Build Events→Post-Build

Event→Command Line.

The contents as shown below:

IF EXIST "$(ZW3D_DIR)zrc.exe" "$(ZW3D_DIR)zrc.exe" "$(SolutionDir)\." -o "$(TargetDir)$(ProjectName).zrc"

(Note: ZW3D_DIR is an environment variable whose value is ZW3D installation path)

Chapter 4: Use ZW3D Command Dialog

1. Refer to Chapter 1 to create an empty project and name it as SetColor.

2. Add a SetColor.cpp in the project, and input the code as follows:

#include"VxApi.h"

intSetColor(intidData, void* echo);

intSetColorInit(int format, void *data)

{

 cvxCmdFunc("SetColor", (void*)SetColor, VX_CODE_GENERAL);

 return0;

}

ZW3D API INTRODUCTION 25

intSetColorExit(void)

{

 cvxCmdFuncUnload("SetColor");

 return0;

}

intSetColor(intidData, void* echo)

{

 intidEnt = 0;

 intidParent = 0;

 vxNameentName = {0};

 cvxDataGetEnt(idData, 1, &idEnt, &idParent);

 evxEntTypetype;

 if (cvxEntClassNum(idEnt) == VX_ENT_FACE)

 {

 svxFaceAtatt;

 cvxMemZero(&att, sizeof(att));

 cvxPartInqFaceAt(idEnt, &att);

 att.front_color.r = 0;

 att.front_color.g = 0;

 att.front_color.b = 255;

 cvxPartSetFaceAt(1, &idEnt, &att);

 }

 return0;

}

3. Add the Module Definition file, SetColor.def. Copy the code as follows:

LIBRARY SetColor.dll

EXPORTS

SetColorInit

SetColorExit

SetColor

ZW3D API INTRODUCTION 26

4. Refer to Chapter 1 to set the configuration of the project and build to get SetColor.dll and

SetColor.zrc. Now, we have the dll and zrc. Copy all the file to ZW3D installation directory.

Note: you must close ZW3D before you copy the files.

5. Start ZW3D, create a new part and draw a box. Then, input “!SetColor” in the command line.

You can get the command dialog as follows. Select a surface and press OK, you can find the

color of the surface was changed to blue.

ZW3D API INTRODUCTION 27

6. Debug this project. Set the Output File to

“C:\Program Files\ZWSOFT\ZW3D 2015 Eng\apilibs\$(TargetName)$(TargetExt)”.

You can refer to the picture as follows. Then, rebuild the project. You can set the break point

and debug this project.

Note: ZW3D will load all the DLL in the “apilibs” directory automatically.

ZW3D API INTRODUCTION 28

ZW3D API INTRODUCTION 29

Chapter 5: How to call ZW3D functions?

1. Get ZW3D command dialogs.

Download all ZW3D command dialogs from the following link:

https://dl.zwsoft.com/zw3d/Products/ZW3D_API/2023/zw3d-command-dialog_2023.rar

2. Tcmd key properties

(1) Define Template command symbol

Take Extrude command as an example. Define the relevant symbols of template

command as follows:

Introduction to common symbols as follows:

a. "template name" is the command name

b. "function" is the performed function of command, which is often the same name as

command. Define function:

int fun(int idData, int *idOut); or

int fun(int idData);

 Note: idData is the corresponding container to the command. Use cvxDataSet to store

the data of the corresponding field and use cvxDataGet to get the data of the corresponding

field.

c. "echo_obj" is the preview function of command(optional) and define function

Int funEo(int idData);

d. "init" is the initial function of command which can initialize data to the parameter

container. As form has not been built when calling init, ui related interface access UI data

cannot be called. Define function:

void fun_init(int idData);

https://dl.zwsoft.com/zw3d/Products/ZW3D_API/2023/zw3d-command-dialog_2023.rar

ZW3D API INTRODUCTION 30

e. "init_after" is the initial function of command. At this point, form has been built, you can

initialize some status of ui. Define function as follows:

void fun_initAft(int idData);

f. "term" is exit function which will not be called in normal execution. If term involves with

resource release, it may need to explicitly call term function. Define function as follows:

void term();

g. "multi_cmd" is mode of multiple commands. In the same command, according to the

value of field of some option type, control the display status of field corresponding

control. Such as in Block command, switch 8 types of fields, the other control status in

the interface will change accordingly.

h. "show_tol" controls feature command interface whether to display Tolerance page as

follows:

i. "esc_dlg" Whether the close command is automatically displayed when the command is

executed slowly

j. "custom" self-defines feature command in user-defined feature as follows:

(2) Define field

Define field parameters as follows:

ZW3D API INTRODUCTION 31

a. Parameters self attributes:

⚫ trigger-command execution symbol which was a required input previously and is now an

optional input. Meanwhile, you can end the command by middle mouse button.

⚫ description- field characters to display. Currently, this parameter is used to display the

parameter name after the open operation is performed on the feature node.

⚫ checker-User checks whether the value of this field is empty. If empty, end the command,

used for set-list.

⚫ type-null, entity, point, option, number/distance/angle, form, command, continue,

string.

b. Option general properties are set as follows:

⚫ Allow to input empty：empty_ok

⚫ Field condition of availability:|enable=fun. Compared with callback, the number of calls

enable function will be more frequent, other control parameter changes will be

triggered for calling.

enable function defines as follows:

int funEn();

Note: return 1, the field is not available, otherwise return 0.

⚫ no_qpick_echo：do not execute echo function when choosing entity

c. callback-callback function, definition as follows:

⚫ callback function：<property name="callback">funCb</property>

int funCb(char* formName, int idField, int idData);

d. next-skip to the next field after this control input, and properties defines as follows:

⚫ automatically skip: <property name="next">10</property>

Automatically skip to the control id=10 after this control input.

ZW3D API INTRODUCTION 32

(3) entity

Get entity input, generally corresponding to the entity or the entity list control

(Entity/EntityList/EntityTable)

General properties of entity define as follows:

a. options-control the comprehensive options of control behavior

General behaviors include:

⚫ Filter: /shell/face/curve/edge/, etc., custom_filter=fun

a. /face/curve/edge/ as entity type and separate with ‘/’. If entity inside component can

be selected, it can be changed to /Eface/Edge/···

b. custom_filter is user-defined filter setting which can be set limitation to select.

Function defines as follows:

int funFilter(int idx_ent);

 Note: return 1, idx_ent can be selected; otherwise, return 0.

c. General entity filter goes as the following table, separate with ‘/’:

Entity object Filter

Shape shell

Face face

Edge edge

Line curve

Point point

Curve list clist

Sketch sketch

Datum datum

Axis axis

CSYS csys

Feature ftr

Component comp

Text text

ZW3D API INTRODUCTION 33

Dimension dim

⚫ Select object to check and limit:chk_line, chk_plane(use with other filters)

a. chk_line: check whether it is a line

b. chk_plane: check whether it is a plane

b. list-Multiple choice or not, 1 means multiple choice, single choice is not allowed to set,

the properties are defined as follows:

<property name="list">1</property>

c. comp-generally, used from setlist associating form, and used as a pair with field form in

sub template command, and store data from the template command, the properties are

defined as follows:

<property name="comp">31</property>

a. SetList the method to define sub-command is as follows:

b. UI display as follows:

(4) point

ZW3D API INTRODUCTION 34

Get point input, generally it’s corresponding to point control

a. options-the comprehensive options to control the control behaviors

⚫ Filter: /face/curve/edge/, etc.,custom_filter=fun, similar with entity

control:or/direction/ means direction.

⚫ ddd_drag: dray dynamically, it’s available if control as point and not available as

direction

⚫ on_ent: the required point on entity

⚫ hi_ent: the selected entity highlights

⚫ get_dir: means direction which will automatically get direction value

⚫ rev_dir: means direction which can reverse direction through mouse clicking the

direction arrow

(5) 2.3 option

Get user’s options and it’s generally corresponding to the controls of (OptionButtons/

OptionCheckBox/ OptionComboBox/ OptionRadios)

a. options-control the comprehensive options of control behaviors

⚫ Automatically initialize data: |auto_log(option)

⚫ Set default value: @sym_int=0

(6) number

Get value input, without unit, generally corresponding to number control (Number)

a. options-control the comprehensive options of the control behavior

⚫ Set default value: @sym_dbl=0.0(will record the last set value), or val=0.0

⚫ Set the minimum value: min=-10000.0

⚫ Set the maximum value: max=10000.0

⚫ Set the increment: inc=15.0,

(7) distance

Get value input, with unit, generally generate dimension, corresponding to distance control

(Distance)

a. options-control the comprehensive options of the control behavior

ZW3D API INTRODUCTION 35

⚫ Set basic value the same as number

⚫ ddd setting: property name="dim", please see Dynamic Drag Dimension DDD

Development Guide for details

(8) angel

Get value angle input, generally corresponding to angle control (Angle)

a. options-control the comprehensive options of the control behavior

⚫ Set base value the same as number

⚫ ddd setting: property name="dim", please see Dynamic Drag Dimension DDD

Development Guide for details

(9) form

Display a specified GUI form, corresponding to (FormProxy), which is used in setlist case,

embedded a sub-template command, or display a GUI form.

Corresponding to setlist setting is as follows:

a. options-control comprehensive options of the control behavior

⚫ Allow to input empty: empty_ok

b. comp-generally used in setlist associated entity, please see entity control comp

⚫ <property name="comp">2</property>, 2 serves as entity control id

c. Template-sub-template setting

⚫ <property name="template">FtFlltEdgSet</property>

(10) continue

Waiting, generally used in middle mouse button to end command, set between the required

option and optional option.

a. options-control the comprehensive options of the control behavior

⚫ End command: ~CdSkipEnd,

b. prompt-prompt

⚫ Prompt: <property name="prompt"><middle-click> to finish.</property>

(11) string

Get character string input, generally corresponding to character string control (String)

(12) Field access and setting

ZW3D API INTRODUCTION 36

a. Setting

cvxDataSet used in setting the data of specified field

b. Get

(13) cvxDataGet user gets specified data of field

3. Reference to ZW3D command dialog.

a) Run “$Report” in the command line of ZW3D.

You will get the following message after you run the command successfully.

b) Run the command you need to know, for example the function to create Box.

You will get the message as below, “[vxSend,”!FtAllBox]”, which means ZW3D run

“!FtAllBox” to create the box.

c) Go to ZW3D Command dialog folder, you can find a command dialog named as

“FtAllBox.ui”.

ZW3D API INTRODUCTION 37

d) Use ZW3D UI designer to open this dialog, you will get a warning. Press No to ignore it.

e) You will know all the IDs of the controls.

ZW3D API INTRODUCTION 38

f) You will find there are two “2nd point” controls. To learn the difference,

refer to step b) to know the function. Then, change your mouse on different controls in

the command dialog. You can get different message if you change the controls. You can

find the ID in the messages.

4. Now, you already know the function name and the control IDs. Let’s use ZW3D function to

create a box although ZW3D also support the API function to create a box [cvxPartBox()].

a) Refer to chapter 1 to create a new project and named as “myBox”.

b) Add myBox.cpp, and copy the code as follows:

#include"VxApi.h"

intmyBox();

intmyBoxInit(int format, void *data)

{

 cvxCmdFunc("myBox", (void*)myBox, VX_CODE_GENERAL);

 return0;

}

ZW3D API INTRODUCTION 39

intmyBoxExit(void)

{

 cvxCmdFuncUnload("myBox");

 return0;

}

intmyBox()

{

 intidData;

 svxDatatempData;

 cvxDataInit("FtAllBox", &idData);

 // Set the option to choose the type

 cvxDataZero(&tempData);

 tempData.isNumber = 1;

 tempData.NumType = VX_NUM;

 tempData.Num = 1;

 cvxDataSet(idData, 8, &tempData);

 // Set the first point

 cvxDataZero(&tempData);

 tempData.isPoint = 1;

 tempData.PntType = VX_PNT3_ABS;

 tempData.Pnt.x = tempData.Pnt.y = tempData.Pnt.z = 0;

 cvxDataSet(idData, 1, &tempData);

 // Set the second point

 cvxDataZero(&tempData);

 tempData.isPoint = 1;

 tempData.PntType = VX_PNT3_ABS;

 tempData.Pnt.x = tempData.Pnt.y = tempData.Pnt.z = 15;

 cvxDataSet(idData, 2, &tempData);

 // Run this ZW3D command

 cvxCmdExec(idData);

 return0;

}

c) Add the Module Definition file, myBox.def. Copy the code as follows:

LIBRARY myBox.dll

EXPORTS

 myBoxInit

 myBoxExit

myBox

ZW3D API INTRODUCTION 40

Build this project and load the DLL in ZW3D. Run “~myBox” in the command line after you create

a new part. This command will create a box in the modeling space.

5. The value of the ZsCc::optionbuttons.

After clicking on the control, you can find the DataList property, where the value order of the

control should be 1, 0, 3, 2. So you need to set the right value in your code. The following

code means this project use the first button. If you want to use the second button, you need

to set the value to 0.

// Set the option to choose the type

 cvxDataZero(&tempData);

 tempData.isNumber = 1;

 tempData.NumType = VX_NUM;

 tempData.Num = 1;

 cvxDataSet(idData, 8, &tempData);

ZW3D API INTRODUCTION 41

ZW3D API INTRODUCTION 42

Chapter 6: ZW3D Register information

The register of ZW3D is saved in:

64 bit: [HKEY_LOCAL_MACHINE\SOFTWARE\ZWSOFT\ZW3D]

32 bit: [HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ZWSOFT\ZW3D]

The CurrentVersion in the root directory remembers the version run last time. The

CurrentVersion in the special version directory remembers the language run last time.

You can also get the detailed information in each language directory, like installation path.

ZW3D API INTRODUCTION 43

	ZW3D API Introduction
	Chapter 1: Start with ZW3D API
	Chapter2: Customized Menu / Ribbon / Toolbar
	Chapter 3: ZW3D UI Designer introduction
	Chapter 4: Use ZW3D Command Dialog
	Chapter 5: How to call ZW3D functions?
	Chapter 6: ZW3D Register information

